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A

Background: Differences in tacrolimus dosing
across ancestries is partly attributable to poly-
morphisms in CYP3A5 genes that encode
tacrolimus-metabolizing cytochrome P450 3A5
enzymes. The CYP3A5*1 allele, preponderant
in African Americans, is associated with rapid
metabolism, subtherapeutic concentrations,
and higher dose requirements for tacrolimus,
all contributing to worse outcomes. Little is
known about the relationship between
CYP3A5 genotype and the tacrolimus
pharmacokinetic area under the curve (AUC)
profile in African Americans or whether
pharmacogenetic differences exist between
conventional twice-daily, rapidly absorbed,
immediate-release tacrolimus (IR-Tac) and
once-daily extended-release tacrolimus
(LifeCycle Pharma Tac [LCPT]) with a delayed
absorption profile.

Study Design: Randomized prospective cross-
over study.

Setting & Participants: 50 African American
maintenance kidney recipients on stable IR-Tac
dosing.

Intervention: Recipients were randomly assigned
to continue IR-Tac on days 1 to 7 and then
switch to LCPT on day 8 or receive LCPT on
days 1 to 7 and then switch to IR-Tac on day
8. The LCPT dose was 85% of the IR-Tac total
daily dose.
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Outcomes: Tacrolimus 24-hour AUC (AUC0-24),
peak and trough concentrations (Cmax and
Cmin), time to peak concentration, and
bioavailability of LCPT versus IR-Tac, according
to CYP3A5 genotype.

Measurements: CYP3A5 genotype, 24-hour
tacrolimus pharmacokinetic profiles.

Results: w80% of participants carried the
CYP3A5*1 allele (CYP3A5 expressers). There
were no significant differences in AUC0-24 or
Cmin between CYP3A5 expressers and non-
expressers during administration of either IR-Tac
or LCPT. With IR-Tac, tacrolimus Cmax was 33%
higher in CYP3A5 expressers compared with
nonexpressers (P = 0.04): With LCPT, this
difference was 11% (P = 0.4).

Limitations: This was primarily a pharmacoge-
netic study rather than an efficacy study; the
follow-up period was too short to capture clinical
outcomes.

Conclusions: Achieving therapeutic tacrolimus
trough concentrations with IR-Tac in most African
Americans results in significantly higher peak
concentrations, potentially magnifying the risk
for toxicity and adverse outcomes. This
pharmacogenetic effect is attenuated by
delayed tacrolimus absorption with LCPT.

Trial Registration: Registered atClinicalTrials.gov,
with study number NCT01962922.
Individuals of African ancestry accounted for one-third of
US deceased donor kidney recipients in 2015 despite

constituting 13% of the population.1 Because African Amer-
icans are inadequately represented in most immunosup-
pression trials,2,3 findings from such studies cannot
necessarily be extrapolated to this subpopulation. Rates of
rejection4 and transplant loss4-7 are greater in African Amer-
icans compared with Americans of European ancestry due to
immunologic and nonimmunologic factors.8 Recently, the
contribution of genetics to these disparate outcomes has
become an area of focus.9,10 Among contemporary therapies,
the widely used tacrolimus11,12 exemplifies a drug for which
patient genotype affects dosing.
Factors that affect tacrolimus pharmacokinetics include
sex, ethnicity, concomitant medications, and genetic
polymorphisms.13-16 Although tacrolimus is metabolized
via CYP3A4 and CYP3A5 enzymes primarily in the gut
and liver, the intrinsic tacrolimus clearance capacity of
CYP3A5 predominates over CYP3A4.17 Loss-of-function
alleles CYP3A5*6, CYP3A5*7 (found only in individuals
of African ancestry), and CYP3A5*3 (present in most
Americans of European ancestry and Asians) result in
marked diminution of CYP3A5 enzyme activity (CYP3A5
nonexpressers).18 The CYP3A5*1 allele, found predomi-
nantly but not exclusively in individuals of black African
descent,18 encodes CYP3A5 enzymes that are associated
with rapid tacrolimus disposition (CYP3A5 expressers),
leading to subtherapeutic concentrations and increased
dose requirements.19
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Original Investigation
In the Deterioration of Kidney Allograft Function
(DeKAF) Study, the CYP3A5*1 allele was found to be the
most important allele associated with subtherapeutic
tacrolimus concentrations in African Americans,15,20 sup-
porting tacrolimus underexposure as an inferior transplant
outcome determinant in this population.21

Pharmacogenetic studies of tacrolimus in African
Americans (such as DeKAF) have been limited by: (1)
tacrolimus assays being performed at individual centers
rather than a centralized laboratory, (2) lack of stan-
dardized tacrolimus dosing,22 and (3) measurement of
trough concentrations rather than steady-state pharma-
cokinetic area-under-the-curve (AUC) profiles.15,20 This
latter limitation is especially important because in-
vestigations into the association between pharmacokinetic
profile and adverse effects of calcineurin inhibitors sug-
gest that their toxicities23-25 are related to peak concen-
tration (Cmax), with improvement when the dose is
reduced or withdrawn.26-28

CYP3A5 enzyme activity is greatest in the foregut and
progressively decreases downstream through the bowel.29

Conventional twice-daily tacrolimus (ie, immediate-
release tacrolimus [IR-Tac]) undergoes immediate
capsular release and rapid absorption in the proximal small
bowel, leading to peak blood concentrations 90 to 120
minutes after administration (tmax). LCPT (originally
LifeCycle Pharma Tacrolimus [Envarsus XR in the United
States]) is a once-daily tacrolimus formulation with similar
efficacy and safety to IR-Tac. LCPT’s drug delivery tech-
nology results in delayed tacrolimus absorption
throughout the gastrointestinal tract,30,31 leading to longer
tmax and increased bioavailability compared to IR-Tac.
Studies have demonstrated that LCPT has a lower dose
requirement than IR-Tac to achieve similar tacrolimus
trough concentrations.32,33 Whereas Clinical Pharmaco-
genetics Implementation Consortium guidelines for
CYP3A5 genotype and tacrolimus dosing are available for
IR-Tac, there are currently no guidelines for once-daily
tacrolimus. Given the pharmacokinetic differences of
LCPT compared to IR-Tac, it is unlikely that the same
recommendations are applicable.34

The purpose of this study was to advance under-
standing of the differences in tacrolimus exposure be-
tween African American CYP3A5 expressers and CYP3A5
nonexpressers using steady-state 24-hour pharmacoki-
netic profiling and to explore the hypothesis that phar-
macogenetic differences between CYP3A5 expressers and
nonexpressers would be attenuated by delayed tacrolimus
absorption with LCPT compared to immediate absorption
with IR-Tac.
Methods

Study Design and Objectives

ASERTAA (A Study of Extended Release Tacrolimus in Af-
rican Americans) was an open-label, prospective, random-
ized, 2-sequence, 3-period, crossover, pharmacogenetic
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study conducted at the University of Pennsylvania, Uni-
versity of Illinois, and Washington University School of
Medicine (St. Louis) between November 25, 2013, and July
30, 2015 (Fig 1). The main study objective was to compare
steady-state pharmacokinetics of once-daily LCPT tablets
(dosed 15% lower than total daily IR-Tac dose) with evenly
divided twice-daily IR-Tac capsules (Prograf [Astellas
Pharma US, Inc] or its generic formulations [predominately
Sandoz, Dr Reddy, and Accord formulations], for which
the systemic exposure differs minimally compared to
Prograf35-37) in stable African American kidney recipients,
according to CYP3A5 genotype. Secondary objectiveswere to
confirm the total daily dose reduction in the LCPT group
following conversion from IR-Tac and compare the safety
and short-term efficacy of the 2 formulations. After
completing the pharmacokinetic phase, patients had an
option to enter a 5-month extended-use phase with their
second assigned treatment.

Eligible patients were randomly assigned in a 1:1 ratio
using a fixed-block randomization scheme, generated by
an independent statistician before study initiation, to one
of 2 sequences (Fig 1): sequence I: patients continued
their current IR-Tac dose until study day 7, then
switched to LCPT; sequence II: patients started on LCPT
at 15% lower total daily dose than IR-Tac until study day
7, then switched to IR-Tac at its previous twice-daily
dose. Each participant received the second assigned
treatment from days 8 to 21. Twenty-four–hour phar-
macokinetic profiles were obtained at days 7, 14, and 21.
No immunosuppression dose adjustment was permitted
during the pharmacokinetic phase. Patients continued
concomitant immunosuppression (mycophenolate
mofetil/mycophenolate sodium and corticosteroids)
throughout the study per each institution’s standard of
care. Safety assessments were completed approximately
30 days after administration of the last study treatment
for all patients. The study was reviewed and approved by
the institutional review board (approval numbers: Uni-
versity of Pennsylvania: 818642; University of Illinois:
2014-0494; and Washington University: 201406026) in
each center. This study was conducted in accordance
with the Declaration of Helsinki; all participants provided
informed consent.

Participants

Male or female deceased or living donor kidney recipients
aged 18 to 70 years of African ancestry were invited to
participate. Participants were at least 6 months post-
transplantation (2 exceptions were granted: 1 patient, 5.9
months, and another, 4.7 months posttransplantation),
with therapeutic tacrolimus concentrations (per center
practice) on a stable IR-Tac dose and formulation. Eight
patients at enrollment were taking medications known to
have drug-drug interactions with tacrolimus and were
required to continue the same dose of these medications
(diltiazem hydrochloride, n = 1; azithromycin, n = 6;
and amiodarone, n = 1) during the pharmacokinetics
AJKD Vol 71 | Iss 3 | March 2018



Figure 1. Study design. Abbreviations and definitions: IR-Tac, immediate-release tacrolimus; LCPT, extended-released tacrolimus
(originally LifeCycle Pharma Tacrolimus); PK, pharmacokinetic.
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study. Participants were not permitted to start new medi-
cations or products known to affect tacrolimus blood
concentrations.

Study exclusion criteria included acute rejection within
3 months before enrollment, donor-specific antibody
positivity, BK viremia, or estimated glomerular filtration
rate ≤ 25 mL/min/1.73m2.

Bioanalytic Methods

The central laboratory (University of Pennsylvania) con-
ducted tacrolimus whole blood concentration analyses on
all study samples according to principles of Good Labo-
ratory Practice. The analysis of tacrolimus was performed
with high-performance liquid chromatography followed
by tandem mass spectrometry detection.

Genotyping

After DNA extraction, polymerase chain reaction–based
genotypes for each of the candidate single-nucleotide
polymorphisms (SNPs) were generated by TaqMan SNP
genotyping assay performed within the Molecular Core
facilities of the University of Pennsylvania. A detailed
description of genotyping methods can be found in the
supplementary material (Item S1). There were no unde-
termined genotypes in this analysis.

Participants were classified as nonexpressers if they
possessed 2 variant loss-of-function CYP3A5 alleles (ie,
CYP3A5 *3, *6, or *7). Individuals with only 1 or none of
these variant alleles were presumed to have at least 1
AJKD Vol 71 | Iss 3 | March 2018
functional CYP3A5*1 allele and were considered to be ex-
pressers. The CYP3A5 genotypic frequencies of the study
population were in Hardy-Weinberg equilibrium.

Study End Points

Pharmacokinetic parameters included AUC from time 0 to
24 hours (AUC0-24), Cmax, tmax, minimum blood con-
centration observed over the 24-hour interval (Cmin; also
referenced as C24 because the value is obtained directly
from the observed concentration data at the 24-hour
nominal time point), predose concentration, percent
peak-to-trough fluctuation of the drug concentration over
the dosing interval (%Fluctuation = 100 × [(Cmax − Cmin)/
Cavg], and percent concentration swing at the steady state
(%Swing = 100 × [(Cmax − Cmin)/Cmin]; peak to trough
ratio). Pharmacokinetic sampling times were predose and
0.50, 1.00, 1.50, 2.00, 4.00, 6.00, 8.00, 10.00, 12.00,
13.00, 14.00, 16.00, 18.00, and 24.00 hours postdose.

Safety end points included incidence and severity of
treatment-emergent adverse events. Incidences of biopsy-
proven or clinical rejection and deaths were captured for
all randomly assigned participants. For safety measure-
ments, laboratory specimens were analyzed at the local
laboratory; the investigator classified each result as either
clinically significant or not clinically significant.

Statistical Analysis

SAS software (version 9.3; SAS Institute Inc) was used to
carry out the statistical analysis. A detailed description
317



Figure 2. Patient attrition flow diagram. Abbrevia-
tions and definitions: IR-Tac, immediate-release
tacrolimus; LCPT, extended-release tacrolimus
(originally LifeCycle Pharma Tacrolimus); LFT, liver
function test; PK, pharmacokinetic.
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of analytical methods used in this study is provided in
Item S1. All P values from inferential tests were reported as
is without adjustment for multiple comparisons.

Sample Size Determination

Sample size determination was not based on formal
statistical assumptions. In order to provide a descriptive
evaluation of the pharmacokinetics of tacrolimus from
LCPT and IR-Tac in the study population, a sample size of
up to 72 male and female African American kidney
recipients on stable immunosuppression regimens was
planned.
Results

Participants

Fifty patients were randomly assigned and treated (n = 27
in sequence I [IR-Tac/LCPT], n = 23 in sequence II
[LCPT/IR-Tac]); 46 patients completed the entire
pharmacokinetics study of three 24-hour assessments
(Fig 2); of these, 35 (76%) were CYP3A5 expressers.
Demographic and transplant characteristics across both
treatment sequence groups were comparable (Table 1).
Twenty-five (54%) participants had preexisting diabetes.
Forty-two participants entered the extension phase
(21 individuals per treatment group); 18 and 20
318
individuals in the LCPT and IR-Tac groups, respectively,
completed this phase (Fig 2).

Overall Pharmacokinetics of LCPT and IR-Tac

Consistent with the study conversion protocol, the
mean ± standard deviation total daily dose was
9.17 ± 4.02 mg for IR-Tac and 7.78 ± 3.44 mg for LCPT
(Table 2). During both treatments, tacrolimus AUC0-24
was maintained without dose adjustments for the entire
pharmacokinetics phase. Overall, the estimated conver-
sion ratio of 0.85 from IR-Tac to LCPT resulted in
higher exposure in terms of Cmin and AUC0-24, with a
ratio of geometric means of 112.8% (P = 0.02) and
112.6% (P = 0.01), respectively. IR-Tac was character-
ized by higher Cmax and tmax of 1.1 hours, in contrast to
LCPT, for which Cmax was lower and tmax was 5.0 hours
(P < 0.001 vs IR-Tac for Cmax and tmax; Fig 3). Cmax was
w30% lower during LCPT treatment than with IR-Tac
(P < 0.001, ratio of geometric means of 71.7%, 90%
confidence interval [CI], 64.8%-79.3%). Peak-to-trough
fluctuation was reduced by w40% (P < 0.001) and
bioavailability of LCPT was 32% higher than for IR-Tac
(P < 0.001). Differences in AUC0-24, Cmin, and Cmax

persisted after dose normalization. Estimated intra-
individual coefficients of variation for AUC0-24, Cmax,
and Cmin for LCPT and IR-Tac were all <30%, the US
AJKD Vol 71 | Iss 3 | March 2018



Table 1. Summary of Demographics and Baseline Characteristics by CYP3A5 Genotype and Treatment Sequence in Patients From
the Pharmacokinetic Population

Parameter

CYP3A5 Genotype Treatment Sequence (PK Population)

Safety
Population
(N = 50)

Expresser
(N = 35)

Nonexpresser
(N = 11)

IR-Tac /
LCPT
(N = 23)

LCPT /
IR-Tac
(N = 23)

Study
(N = 46)

Treatment sequence
LCPT / IR-Tac 20 (57.1%) 3 (27.3%) 0 (0%) 23 (100.0%) 23 (50.0%) 23 (46%)
IR-Tac / LCPT 15 (42.9%) 8 (72.7%) 23 (100.0%) 0 (0%) 23 (50.0%) 27 (54%)

Age, y, mean ±SD 48.5 ± 10.85 54.0 ± 10.12 48.3 ± 9.87 51.4 ± 11.72 49.8 ± 10.83 49.8 ± 10.38
Black or African American ancestry 35 (100.0%) 11 (100.0%) 23 (100.0%) 23 (100.0%) 46 (100.0%) 50 (100%)
Sex
Female 16 (45.7%) 3 (27.3%) 10 (43.5%) 9 (39.1%) 19 (41.3%) 21 (42.0%)
Male 19 (54.3%) 8 (72.7%) 13 (56.5%) 14 (60.9%) 27 (58.7%) 29 (58.0%)

Time from KTx to first dose of
any study drug, mo

31.6 ± 28.68 44.2 ± 38.75 25.8 ± 26.97 43.5 ± 33.49 34.6 ± 31.38 32.8 ± 30.83

Kidney donor type
Deceased 26 (74.3%) 8 (72.7%) 18 (78.3%) 16 (69.6%) 34 (73.9%) 36 (72.0%)
Living 9 (25.7%) 3 (27.3%) 5 (21.7%) 7 (30.4%) 12 (26.1%) 14 (28.0%)

Prior kidney transplant
Yes 4 (11.4%) 1 (9.1%) 3 (13.0%) 2 (8.7%) 5 (10.9%) 6 (12.0%)
No 31 (88.6%) 10 (90.9%) 20 (87.0%) 21 (91.3%) 41 (89.1%) 44 (88.0%)

CYP3A5 genotype
*1/*1 12 (34.3%) 0 (0%) 4 (17.4%) 8 (34.8%) 12 (26.1%) 13 (26.0%)
*1/*3 17 (48.6%) 0 (0%) 7 (30.4%) 10 (43.5%) 17 (37.0%) 19 (38.0%)
*1/*6 6 (17.1%) 0 (0%) 4 (17.4%) 2 (8.7%) 6 (13.0%) 6 (12.0%)
*3/*3 0 (0%) 4 (36.4%) 4 (17.4%) 0 (0%) 4 (8.7%) 4 (8.0%)
*3/*6 0 (0%) 6 (54.5%) 3 (13.0%) 3 (13.0%) 6 (13.0%) 6 (12.0%)
*6/*6 0 (0%) 1 (9.1%) 1 (4.3%) 0 (0%) 1 (2.2%) 1 (2.0%)
Missing 1 (2.0%)

Baseline weight, kg 88.5 ± 25.03 93.8 ± 19.25 88.1 ± 19.27 91.4 ± 27.75 89.7 ± 23.68 89.4 ± 23.75
Baseline BMI, kg/m2 30.3 ± 6.85 31.2 ± 5.44 30.0 ± 4.80 31.0 ± 7.92 30.5 ± 6.50 30.3 ± 6.49
Screening trough concentration, ng/mL 6.7 ± 1.82 6.5 ± 2.14 6.9 ± 2.16 6.4 ± 1.55 6.7 ± 1.88 6.6 ± 1.82
Note: Values for continuous variables are given as count (percentage); for categorical variables, as mean ± SD.
Abbreviations and definitions: BMI, body mass index; KTx, kidney transplant; IR-Tac, immediate-release tacrolimus; LCPT, extended-release tacrolimus (originally LifeCycle
Pharma Tacrolimus); PK, pharmacokinetics; SD, standard deviation.
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Food and Drug Administration (FDA) threshold for a
highly variable drug.38

Effect of CYP3A5 Genotype on Tacrolimus Total

Daily Dose

The IR-Tac total daily dose was 10.1 mg/d among CYP3A5
expressers and 6.3 mg/d for nonexpressers (P < 0.01;
Table 3; Fig 4). Among CYP3A5 expressers, tacrolimus
daily dose requirements were higher in participants with
2 variant alleles (CYP3A5*1*1) than in CYP3A5*1*6
heterozygotes.

Effect of CYP3A5 Genotype on the

Pharmacokinetics of IR-Tac and LCPT

During treatment with IR-Tac, there were no significant
differences in overall AUC0-24 or Cmin between CYP3A5
expressers and nonexpressers (Tables 3 and 4). However,
Cmax for CYP3A5 expressers (25.51 ng/mL) was 33.9%
higher (90% CI, 6.2%-68.8%; P = 0.04) than for
nonexpressers (19.50 ng/mL; Fig 5A; Tables 3 and 4).
When participants were treated with LCPT, there were no
AJKD Vol 71 | Iss 3 | March 2018
significant differences in AUC0-24, Cmax, or Cmin between
CYP3A5 expressers and nonexpressers (Fig 5B; Tables 3
and 4).

Pharmacokinetics of IR-Tac and LCPT Stratified by

CYP3A5 Genotype

Among CYP3A5 expressers, LCPT Cmax was 31.4% lower
(P < 0.001) than that of IR-Tac; LCPT AUC0-24 was 12.2%
higher (P = 0.04) than that of IR-Tac (Table 5). Among
CYP3A5 nonexpressers, Cmax and AUC0-24 were similar
between IR-Tac and LCPT, although Cmin was signifi-
cantly higher for LCPT than IR-Tac, reflecting our
underestimation of the correct conversion ratio between
tacrolimus formulations. On a milligram-to-milligram
basis, bioavailability was increased in CYP3A5 expressers
and nonexpressers by 32.6% and 35.8% (data on file),
respectively, with LCPT compared to IR-Tac.

ABCB1 Genotype

Forty-one percent of participants carried the C3435T
variant allele of ABCB1 (adenosine triphosphate–binding
319



Table 2. Summary of Pharmacokinetic Parameters and Comparisons With Observed and Dose-Normalized Data for Tacrolimus in
Patients From the Pharmacokinetic Population

Observed Result Comparisons of LCPT vs IR-Taca:
RGM (90% CI)LCPT IR-Tac

TDD, mg/db 7.78 ± 3.44 9.17 ± 4.02
Observed parameters
AUC0-24,c h× ng/mL 255.82 (36.2) 226.73 (31.9) 112.6 (104.6 to 121.1); P = 0.01
Cmax, ng/mLc 17.11 (40.1) 23.92 (41.2) 71.7 (64.8 to 79.3); P < 0.001
Cmin, ng/mLc 7.35 (37.9) 6.50 (32.9) 112.8 (104.0 to 122.3); P = 0.02
tmax, hd 5.00 (1.00, 16.00) 1.13 (0.50, 14.0) P < 0.001
Fluctuation, %b 94.21 ± 38.781 192.05 ± 77.145 −97.94 (−120.9 to −74.9); P < 0.001
Cmax/Cmin

b 2.46 ± 0.760 3.94 ± 1.468 −1.479 (−1.901 to −1.056); P < 0.001
Dose-normalized parameters
AUC0-24_D,c h×ng/mL/mg 36.37 (50.6) 27.36 (43.5) 132.6 (123.4 to 142.6); P < 0.001
Cmax_D,c ng/mL/mg 2.43 (43.0) 2.89 (44.6) 84.5 (76.5 to 93.4); P = 0.01
Cmin_D,c ng/mL/mg 1.05 (61.5) 0.78 (50.0) 132.8 (122.6 to 144.0); P < 0.001

Note: n = 46.
Abbreviations and definitions: AUC0-24, area under the concentration-time curve from time 0 to 24 hours; CI, confidence interval; Cmax, maximum observed concentration,
peak; Cmin, minimum blood concentration observed over the 24-hour interval (0-24 hours); this parameter is also referenced as C24 because the value is directly taken from
the observed concentration data at the 24-hour nominal time point; IR-Tac, immediate-release tacrolimus; LCPT, extended-release tacrolimus (originally LifeCycle Pharma
Tacrolimus); RGM, ratio of geometric means; TDD, total daily dose; tmax, time to maximum observed concentration.
aTreatment effect P value was calculated from the analysis used analysis of covariance models that included fixed effects of treatment, sequence, and period. Statements
of RANDOM and REPEATED (effects) were used for the repeated measures in this 3-period partial replicated design. Estimates were based on the FA0(2) covariance
structure and restricted maximum likelihood estimation method.
bData presented are arithmetic mean ± standard deviation and differences in least squares mean (95% CI).
cData presented are geometric means (% coefficient of variation of geometric mean) and ratios of geometric means (90% CI).
dData presented are median (min, max). P value was from 2-sided Wilcoxon 2-sample rank sum test (t-approximation).

Original Investigation
cassette subfamily B member 1: referred to as ABCB1 AA or
AG genotypes). Only 2 patients were homozygous for the
C3435T variant allele and were not included in further
analyses. Neither heterozygous nor homozygous ABCB1
C3435T variant allele carriers had increased tacrolimus
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dose requirements. Among both ABCB1 C3435T variant
allele carriers and noncarriers, AUC0-24 was significantly
higher for LCPT than for IR-Tac. Within treatment groups,
the number of ABCB1 variant alleles did not significantly
affect the weight-adjusted total daily dose or individually
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rs) after AM dose
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LCPTIR-TacTreatment:

rate 1:0.85 IR-Tac:LCPT
lood time-concentration curves

tion curves for immediate-release tacrolimus (IR-Tac) and LCPT
s). Abbreviations: AUC, area under the curve; SE, standard error;
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Table 3. Observed Pharmacokinetic Parameters by Treatment and CYP3A5 Expresser Type From the Pharmacokinetic Population

PK Parameter

CYP3A5 Expresser (n = 35) CYP3A5 Nonexpresser (n = 11)

LCPT IR-Tac LCPT IR-Tac
TDD,a mg/d 8.55 ± 3.42 10.09 ± 3.97 5.34 ± 2.18 6.27 ± 2.61b

Weight-normalized TDD,a mg/kg 0.103 ± 0.048 0.121 ± 0.056 0.058 ± 0.024 0.068 ± 0.029
AUC0-24,c h× ng/mL 256.60 (34.9) 230.34 (26.5) 253.35 (42.0) 215.63 (47.5)
Cmax,c ng/mL 17.30 (39.0) 25.51 (37.4) 16.51 (45.4) 19.50 (47.3)d

Cmin,c ng/mL 7.23 (34.9) 6.52 (27.9) 7.78 (48.1) 6.41 (48.2)
C0, ng/mL 6.32 (34.7) 6.26 (31.4) 7.04 (44.0) 6.24 (50.5)
Note: n = 46.
Abbreviations and definitions: AUC0-24, area under the concentration-time curve from time 0 to 24 hours; Cmax, maximum observed concentration, peak; Cmin, minimum
blood concentration observed over the 24-hour interval (0-24 hours); this parameter is also referenced as C24 because the value is directly taken from the observed
concentration data at the 24-hour nominal time point; IR-Tac, immediate-release tacrolimus; LCPT, extended-release tacrolimus (originally LifeCycle Pharma Tacrolimus);
PK, pharmacokinetics; TDD, total daily dose.
aData presented are arithmetic mean and standard deviation.
bP<0.02 for IR-Tac, nonexpresser versus expresser.
cData presented are geometric mean (% geometric coefficient of variation).
dP=0.04 for IR-Tac, nonexpresser versus expresser.
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measured pharmacokinetic parameters for tacrolimus
(Table S1). Within an ABCB1 genotype (GG vs AG),
the pattern of treatment differences was consistent
with patterns observed in the general transplantation
population.

Safety

Duration of treatment and total dose exposure were
comparable between treatment sequence groups. The
mean duration of treatment was 138.8 days (range,
8-233 days) for sequence I and 166.6 days (range, 21-240
days) for sequence II. Safety analysis of the 50 randomly
assigned and dosed patients showed that mean dose
exposures were 1,107.58 (range, 60.0-2,893.0) mg for
sequence I and 1,448.07 (124.0-2,679.5) mg for
sequence II.

No deaths or acute rejections occurred in study partic-
ipants. The 2 treatment arms were comparable in
treatment-emergent adverse events during both the phar-
macokinetic and extended-use phases of the study. During
the extended-use phase, 7 patients experienced a total of
Figure 4. Tacrolimus total daily dose (TDD) by CYP3A5
genotype.
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11 serious adverse events, 5 events in 3 LCPT-treated
patients and 6 events in 4 patients using IR-Tac.

Adverse Events According to CYP3A5 Genotype

An ad hoc analysis according to genotype of all adverse
events observed during the entire study was performed
and showed no statistically significant differences in
adverse events (Table S2). No patients reported infec-
tious episodes during the pharmacokinetics portion
of the trial.
Discussion

This randomized, prospective, multicenter, crossover,
pharmacogenetic study of tacrolimus is the first such
investigation conducted exclusively in African American
recipients. In this cohort, for which the 51% CYP3A5*1
allelic frequency was similar to that in the general African
American population,18 there are several notable findings.
First, achievement of a therapeutic tacrolimus trough
concentration with IR-Tac was found to result in a 33%
higher peak concentration among CYP3A5 expressers
compared with nonexpressers, an effect attenuated with
LCPT. Second, LCPT has increased bioavailability compared
to IR-Tac regardless of CYPA3A5 genotype. Third, with
conversion from IR-Tac to LCPT, a total daily dose
reduction of 20% is generally appropriate to achieve
equivalent exposure.

Modified-release drugs are commonly developed to
attenuate fluctuation and reduce dosing administration
frequency.39 The 2 available once-daily tacrolimus for-
mulations, LCPT and extended release tacrolimus (ER-Tac;
Astagraf XL; Astellas Pharma US, Inc) are not bioequivalent
to one another40 or to IR-Tac.41-45 Although conversion
from IR-Tac to ER-Tac frequently necessitates a dose
escalation to achieve similar trough concentrations and
AUC0-24,

13,46 conversion of ER-Tac or IR-Tac to LCPT has
been demonstrated to require dose reductions of about
36% and 20%, respectively.40 Until now, African Ameri-
can–specific tacrolimus 24-hour pharmacokinetic data
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Table 4. Comparisons of CYP3A5 Expresser and Nonexpresser Within a Treatment From the Pharmacokinetic Population

LCPT IR-Tac

RGM (90% CI), Expresser to Nonexpresser P a RGM (90% CI), Expresser to Nonexpresser P a

AUC0-24, h× ng/mL 105.7 (85.5-130.5) 0.7 108.4 (89.7-131.2) 0.5
Cmax, ng/mL 111.2 (88.5-139.9) 0.4 133.9 (106.2-168.8) 0.04
Cmin, ng/mL 94.7 (75.7-118.4) 0.7 102.7 (84.4-125.1) 0.8
Note: n = 46.
Abbreviations and definitions: AUC0-24, area under the concentration-time curve from time 0 to 24 hours; CI, confidence interval; Cmax, maximum observed concentration,
peak; Cmin, minimum blood concentration observed over the 24-hour interval (0-24 hours); this parameter is also referenced as C24 because the value is directly taken from
the observed concentration data at the 24-hour nominal time point; IR-Tac, immediate-release tacrolimus; LCPT, extended-release tacrolimus (originally LifeCycle Pharma
Tacrolimus); RGM, ratio of geometric means.
aP value of genotype effect was derived from mixed-effects analysis of covariance models that included fixed effects of genotype and period and random effect of
participants (sequence) on log-transformed data; averages from period 2 (day 14) and period 3 (day 21) were calculated for each patient before analysis.

Figure 5. Observed mean tacrolimus whole blood time-concentration curves byCYP3A5 expresser status for (A) immediate-release tacro-
limus (IR-Tac) and (B) LCPT (extended-release tacrolimus; originally LifeCycle Pharma Tacrolimus). Abbreviations: AUC0-24, area under the
concentration-time curve from time 0 to 24 hours; Cmax, maximum observed concentration, peak; SE, standard error; TDD, total daily dose.
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Table 5. Comparisons Between Treatments Within CYP3A5 Expresser and Nonexpresser From the Pharmacokinetic Population

PK Parameter

CYP3A5 Expresser (n = 35) CYP3A5 Nonexpresser (n = 11)

RGM (90% CI), LCPT to IR-Tac P a RGM (90% CI), LCPT to IR-Tac P a

AUC0-24, h× ng/mL 112.2 (102.2-123.2) 0.04 116.1 (99.7-135.2) 0.1
Cmax, ng/mL 68.6 (61.0-77.2) <0.001 85.2 (64.7-112.3) 0.3
Cmin, ng/mL 111.1 (100.1-123.2) 0.1 121.8 (104.3-142.2) 0.05
Note: n = 46.
Abbreviations and definitions: AUC0-24, area under the concentration-time curve from time 0 to 24 hours; CI, confidence interval; Cmax, maximum observed concentration,
peak; Cmin, minimum blood concentration observed over the 24-hour interval (0-24 hours); this parameter is also referenced as C24 because the value is directly taken from
the observed concentration data at the 24-hour nominal time point; IR-Tac, immediate-release tacrolimus; LCPT, extended-release tacrolimus (originally LifeCycle Pharma
Tacrolimus); PK, pharmacokinetics; RGM, ratio of geometric means.
aP value of treatment effect was derived from mixed-effects analysis of covariance models that included fixed effects of treatment and period and random effect of
participant (sequence) on log-transformed data; averages from period 2 (day 14) and period 3 (day 21) were calculated for each patient before analysis.
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have been lacking for all tacrolimus formulations, espe-
cially important in the context of CYP3A5 genotype status.

Achieving adequate tacrolimus exposure, reflected by
therapeutic trough concentrations, is critical for preventing
rejection. In DeKAF, tacrolimus concentrations in African
American recipients were subtherapeutic despite 60%
higher tacrolimus dosing compared with non–African
Americans in whom target concentrations were achieved;
CYP3A5*1 allele was the most important variant associated
with measured concentrations.15,20 Similar to DeKAF, we
found that CYP3A5 expressers required higher tacrolimus
dosing than nonexpressers to maintain a therapeutic con-
centration, attributable to the fact that CYP3A5 enzyme, as
a more efficient catalyst of tacrolimus than CYP3A4,17

contributes to most CYP3A activity in carriers of the
CYP3A5*1 allele. In nonexpressers, the contribution of
CYP3A5 enzyme is minimal and tacrolimus is primarily
metabolized by CYP3A4.

We also observed that during IR-Tac administration, peak
concentrations were 33% higher in CYP3A5 expressers
compared with nonexpressers, a difference not observed
during LCPT therapy. We propose that when CYP3A5 ex-
pressers are administered IR-Tac, CYP3A5 enzyme activity,
which is highest in the proximal gut, where IR-Tac is
absorbed,29 results in more extensive presystemic meta-
bolism than occurs in nonexpressers (for which CYP3A5
enzymes play a minor role and CYP3A4 predominates). The
combined effects of IR-Tac’s rapid absorption profile plus a
2-fold higher intrinsic tacrolimus clearance capacity of
CYP3A5 enzyme compared to CYP3A4 enzyme leads to
higher peak concentrations in expressers in order to achieve
adequate drug exposure. In contrast, because CYP3A5
enzyme activity decreases downstream along the bowel,
delayed and more distal gastrointestinal release and absorp-
tion in CYP3A5 expressers during LCPT treatment leads
to tacrolimus escaping some presystemic metabolism in
the proximal gut. As a result, LCPT oral bioavailability is
increased in CYP3A5 expressers and the overall pharmacoki-
netic profile, including Cmax, is similar to that in
nonexpressers.

Kuypers et al47 have previously demonstrated that with
IR-Tac, tacrolimus Cmax is inversely correlated with creat-
inine clearance. Moreover, through routine use of tacro-
limus AUC profiling and surveillance kidney transplant
AJKD Vol 71 | Iss 3 | March 2018
biopsies, this same group has shown that persistent high
tacrolimus dose requirement (>0.1 mg/kg/d) and the
presence of at least 1 CYP3A5*1 allele is associated
with histologic evidence of chronic calcineurin
inhibitor–associated nephrotoxicity and worse transplant
outcomes.48 As reviewed recently by Andrews et al,49

emerging data with LCPT suggest that its lower daily
dose requirement and lower Cmax are associated with less
toxicity.36,50 Although it is possible that tacrolimus Cmax

could be inversely related to rejection in organ recipients, a
notion embraced by some during the cyclosporine
era,51,52 this has not been demonstrated in current clinical
practice. A recent pooled analysis of 2 phase 3 trials
comparing LCPT to IR-Tac further demonstrated lower
efficacy failure rates in black kidney recipients treated with
LCPT.53

It is notable that the use of CYP3A5 genotype–based
tacrolimus dosing has not shown an impact on transplant
or patient outcomes in contemporary European trials.54-57

Because patients of African ancestry constituted <8% of
participants in these trials, these study findings may not be
generalizable to the US transplantation population, where
African Americans make up one-third of deceased donor
kidney recipients.12

Toward the end of our study, the CYP3A5*7 allele,
largely confined to individuals originating from the Niger-
Congo region (range, 0%-22%),58 was demonstrated to
affect tacrolimus metabolism.20 Because failure to perform
CYP3A5*7 genotyping may therefore result in misclassifi-
cation,59 we performed an ad hoc analysis in our study
participants. Only 1 individual was a CYP3A5*7 allele
expresser. Although this resulted in reclassification from
*1/*1 to *1/*7, the participant remained classified as a
CYP3A5 expresser by our study definition and study results
were not affected.

Strengths of this study include a multicenter, prospec-
tive, randomized, crossover trial design and an exclusively
African American population, consistently under-
represented in clinical transplantation studies. Additional
strengths include a centralized laboratory for genotype
and pharmacokinetic sample testing, incorporation of
steady-state 24-hour pharmacokinetic AUC profiling rather
than trough concentrations typically used in most
contemporary studies, and a study design that precluded
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changes in immunosuppression dosing or addition of
medications known to interfere with tacrolimus blood
concentrations during the entire pharmacokinetic study
phase.

Limitations include that this was a small sample, pri-
marily a pharmacokinetic study rather than clinical efficacy
study, and that the follow-up period was too short to
capture meaningful clinical outcomes. Because participants
were from the East Coast and Midwest, the study findings
may not be generalizable to African American populations
elsewhere in the United States.

In conclusion, our study demonstrates that with the use
of IR-Tac, achievement of therapeutic tacrolimus concen-
trations in most African Americans resulted in much
higher peak concentrations, with potential for enhanced
toxicity and adverse outcomes. With LCPT, the shape of
the pharmacokinetics profile was not affected by CYP3A5
genotype, and tacrolimus exposure was maintained at
w80% of the IR-Tac total daily dose. Results from this
study additionally indicate that the pharmacokinetics of
LCPT is less influenced by CYP3A5 genotype in African
Americans, and LCPT has distinctive pharmacogenetic
differences compared to IR-Tac in this population. Studies
are ongoing to determine whether these pharmacogenetic
differences represent an opportunity for LCPT to optimize
immunosuppression management in African American
patients and thereby narrow health outcome disparities in
kidney transplantation.

Supplementary Material

Item S1: Detailed description of the genotyping and analytical
methods used.

Table S1: Comparisons of observed pharmacokinetic parameters
between MDR1 GG and AG genotypes within a treatment in
patients from the PK PP population (n = 44).

Table S2: Treatment-emergent adverse events during the study (PK
portion and extended-use phase).
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